3.28 \(\int \cot ^3(c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=98 \[ -\frac {a^3 \sin ^3(c+d x)}{3 d}-\frac {3 a^3 \sin ^2(c+d x)}{2 d}-\frac {2 a^3 \sin (c+d x)}{d}-\frac {a^3 \csc ^2(c+d x)}{2 d}-\frac {3 a^3 \csc (c+d x)}{d}+\frac {2 a^3 \log (\sin (c+d x))}{d} \]

[Out]

-3*a^3*csc(d*x+c)/d-1/2*a^3*csc(d*x+c)^2/d+2*a^3*ln(sin(d*x+c))/d-2*a^3*sin(d*x+c)/d-3/2*a^3*sin(d*x+c)^2/d-1/
3*a^3*sin(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2707, 75} \[ -\frac {a^3 \sin ^3(c+d x)}{3 d}-\frac {3 a^3 \sin ^2(c+d x)}{2 d}-\frac {2 a^3 \sin (c+d x)}{d}-\frac {a^3 \csc ^2(c+d x)}{2 d}-\frac {3 a^3 \csc (c+d x)}{d}+\frac {2 a^3 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*(a + a*Sin[c + d*x])^3,x]

[Out]

(-3*a^3*Csc[c + d*x])/d - (a^3*Csc[c + d*x]^2)/(2*d) + (2*a^3*Log[Sin[c + d*x]])/d - (2*a^3*Sin[c + d*x])/d -
(3*a^3*Sin[c + d*x]^2)/(2*d) - (a^3*Sin[c + d*x]^3)/(3*d)

Rule 75

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2707

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[(x^p*(a + x)^(m - (p + 1)/2))/(a - x)^((p + 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rubi steps

\begin {align*} \int \cot ^3(c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(a-x) (a+x)^4}{x^3} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-2 a^2+\frac {a^5}{x^3}+\frac {3 a^4}{x^2}+\frac {2 a^3}{x}-3 a x-x^2\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac {3 a^3 \csc (c+d x)}{d}-\frac {a^3 \csc ^2(c+d x)}{2 d}+\frac {2 a^3 \log (\sin (c+d x))}{d}-\frac {2 a^3 \sin (c+d x)}{d}-\frac {3 a^3 \sin ^2(c+d x)}{2 d}-\frac {a^3 \sin ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 67, normalized size = 0.68 \[ -\frac {a^3 \left (2 \sin ^3(c+d x)+9 \sin ^2(c+d x)+12 \sin (c+d x)+3 \csc ^2(c+d x)+18 \csc (c+d x)-12 \log (\sin (c+d x))+30\right )}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*(a + a*Sin[c + d*x])^3,x]

[Out]

-1/6*(a^3*(30 + 18*Csc[c + d*x] + 3*Csc[c + d*x]^2 - 12*Log[Sin[c + d*x]] + 12*Sin[c + d*x] + 9*Sin[c + d*x]^2
 + 2*Sin[c + d*x]^3))/d

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 118, normalized size = 1.20 \[ \frac {18 \, a^{3} \cos \left (d x + c\right )^{4} - 27 \, a^{3} \cos \left (d x + c\right )^{2} + 15 \, a^{3} + 24 \, {\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) + 4 \, {\left (a^{3} \cos \left (d x + c\right )^{4} - 8 \, a^{3} \cos \left (d x + c\right )^{2} + 16 \, a^{3}\right )} \sin \left (d x + c\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/12*(18*a^3*cos(d*x + c)^4 - 27*a^3*cos(d*x + c)^2 + 15*a^3 + 24*(a^3*cos(d*x + c)^2 - a^3)*log(1/2*sin(d*x +
 c)) + 4*(a^3*cos(d*x + c)^4 - 8*a^3*cos(d*x + c)^2 + 16*a^3)*sin(d*x + c))/(d*cos(d*x + c)^2 - d)

________________________________________________________________________________________

giac [A]  time = 1.43, size = 94, normalized size = 0.96 \[ -\frac {2 \, a^{3} \sin \left (d x + c\right )^{3} + 9 \, a^{3} \sin \left (d x + c\right )^{2} - 12 \, a^{3} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) + 12 \, a^{3} \sin \left (d x + c\right ) + \frac {3 \, {\left (6 \, a^{3} \sin \left (d x + c\right )^{2} + 6 \, a^{3} \sin \left (d x + c\right ) + a^{3}\right )}}{\sin \left (d x + c\right )^{2}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/6*(2*a^3*sin(d*x + c)^3 + 9*a^3*sin(d*x + c)^2 - 12*a^3*log(abs(sin(d*x + c))) + 12*a^3*sin(d*x + c) + 3*(6
*a^3*sin(d*x + c)^2 + 6*a^3*sin(d*x + c) + a^3)/sin(d*x + c)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.24, size = 109, normalized size = 1.11 \[ -\frac {8 a^{3} \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3 d}-\frac {16 a^{3} \sin \left (d x +c \right )}{3 d}+\frac {3 a^{3} \left (\cos ^{2}\left (d x +c \right )\right )}{2 d}+\frac {2 a^{3} \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {3 a^{3} \left (\cos ^{4}\left (d x +c \right )\right )}{d \sin \left (d x +c \right )}-\frac {a^{3} \left (\cot ^{2}\left (d x +c \right )\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+a*sin(d*x+c))^3,x)

[Out]

-8/3/d*a^3*cos(d*x+c)^2*sin(d*x+c)-16/3*a^3*sin(d*x+c)/d+3/2/d*a^3*cos(d*x+c)^2+2*a^3*ln(sin(d*x+c))/d-3/d*a^3
/sin(d*x+c)*cos(d*x+c)^4-1/2/d*a^3*cot(d*x+c)^2

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 80, normalized size = 0.82 \[ -\frac {2 \, a^{3} \sin \left (d x + c\right )^{3} + 9 \, a^{3} \sin \left (d x + c\right )^{2} - 12 \, a^{3} \log \left (\sin \left (d x + c\right )\right ) + 12 \, a^{3} \sin \left (d x + c\right ) + \frac {3 \, {\left (6 \, a^{3} \sin \left (d x + c\right ) + a^{3}\right )}}{\sin \left (d x + c\right )^{2}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/6*(2*a^3*sin(d*x + c)^3 + 9*a^3*sin(d*x + c)^2 - 12*a^3*log(sin(d*x + c)) + 12*a^3*sin(d*x + c) + 3*(6*a^3*
sin(d*x + c) + a^3)/sin(d*x + c)^2)/d

________________________________________________________________________________________

mupad [B]  time = 6.76, size = 253, normalized size = 2.58 \[ \frac {2\,a^3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {22\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\frac {49\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{2}+\frac {182\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{3}+\frac {51\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}+34\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {3\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}+6\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a^3}{2}}{d\,\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {3\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d}-\frac {2\,a^3\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^3*(a + a*sin(c + d*x))^3,x)

[Out]

(2*a^3*log(tan(c/2 + (d*x)/2)))/d - (a^3*tan(c/2 + (d*x)/2)^2)/(8*d) - ((3*a^3*tan(c/2 + (d*x)/2)^2)/2 + 34*a^
3*tan(c/2 + (d*x)/2)^3 + (51*a^3*tan(c/2 + (d*x)/2)^4)/2 + (182*a^3*tan(c/2 + (d*x)/2)^5)/3 + (49*a^3*tan(c/2
+ (d*x)/2)^6)/2 + 22*a^3*tan(c/2 + (d*x)/2)^7 + a^3/2 + 6*a^3*tan(c/2 + (d*x)/2))/(d*(4*tan(c/2 + (d*x)/2)^2 +
 12*tan(c/2 + (d*x)/2)^4 + 12*tan(c/2 + (d*x)/2)^6 + 4*tan(c/2 + (d*x)/2)^8)) - (3*a^3*tan(c/2 + (d*x)/2))/(2*
d) - (2*a^3*log(tan(c/2 + (d*x)/2)^2 + 1))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{3} \left (\int 3 \sin {\left (c + d x \right )} \cot ^{3}{\left (c + d x \right )}\, dx + \int 3 \sin ^{2}{\left (c + d x \right )} \cot ^{3}{\left (c + d x \right )}\, dx + \int \sin ^{3}{\left (c + d x \right )} \cot ^{3}{\left (c + d x \right )}\, dx + \int \cot ^{3}{\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+a*sin(d*x+c))**3,x)

[Out]

a**3*(Integral(3*sin(c + d*x)*cot(c + d*x)**3, x) + Integral(3*sin(c + d*x)**2*cot(c + d*x)**3, x) + Integral(
sin(c + d*x)**3*cot(c + d*x)**3, x) + Integral(cot(c + d*x)**3, x))

________________________________________________________________________________________